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A technique is developed for the use of pseudo-spectral Fast Fourier Transform methods 
for non-periodic time-dependent problems in fluid dynamics. Called “reduction to periodic- 
ity,” it involves the evaluation of a polynomial function which approximates the departure 
from smooth periodicity of the dependent variable distribution at each time level. The 
FFT is then applied to the residual distribution. The accuracy is demonstrated in several 
one-dimensional problems. Stability and iterative convergence are demonstrated in one- 
dimensional problems with first order, second order, and fourth order time differencing, 
and in two-dimensional problems with first-order time differencing. 

1. INTRODUCTION 

Spectral and pseudo-spectral methods for fluid dynamics dynamics problems have 
been pioneered by Orszag [l-3]. The article by Orszag and Israeli [4] provides other 
references and an introduction to the subject; see also the monograph by Kreiss and 
Oliger [5] and the forthcoming monograph by Gottlieb and Orszag [6]. For periodic 
problems, the spatial derivatives are evaluated from the Discrete Fourier Transform 
using the well-known FFT (Fast Fourier Transform) algorithms. The pseudo-spectral 
methods (or collocation methods) are more general, simpler, and faster than the 
spectral methods for the variable coefficient problems of interest here. In the pseudo- 
spectral approach, the partial differential equations are not actually transformed as 
in the spectral methods; rather, the FFT is merely used to evaluate spatial derivatives 
in place of conventional finite difference or finite element algebraic expressions. 

The use of the FFT over M nodepoints corresponds to using M-th order trigono- 
metric interpolation to evaluate the derivatives. This procedure is of “infinite order” 
12, 41 in the sense that it may be shown to converge (ultimately) faster than any finite- 
order finite difference expression when all derivatives are continuous. Spectral and 
pseudo-spectral methods are also especially well-suited to hydrodynamic stability 
problems because they minimize phase-error problems, the only contribution to 
phase error coming from the time differencing. However, this high accuracy only 
occurs with periodic (and similar) boundary conditions. For viscous problems with 
no-slip walls, the boundary conditions are not so simple. Orszag uses Chebyshev 
polynomials (instead of the trigonometric polynomials of the FFT) and fast transform 
techniques similar to the FFT as the basis of the orthogonal expansion for these 
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problems. Different problems in different coordinate systems require that new 
orthogonal expansions be found. “In practice, it is not a trivial matter to decide on 
the right expansions and the proper method for their implementation. Further, if the 
proper expansions are not made and the proper techniques not used to evaluate them, 
very inefficient and possibly inaccurate simulations may result” [4, p. 2911. (For a 
summary of some problems for which Fourier and Chebyshev transform methods 
apply, see [2, p. 108; 4, pp. 291-2931.) 

In order to use only the simpler, readily available FFT and still use pseudo-spectral 
methods for non-periodic problems, some computational artifice must be used. For 
the computation of a pulse propagation in Burgers equation, with the pulse extending 
over 0 < x < X1 , Gazdag [7] added an artificial data set over -X,, < x < 0. This 
data set over X0 was chosen so as to give continuous functions and derivatives when 
the total function is extended periodically with period X = X,, + X1 . Then the FFT 
is applied over X, but the results for spatial derivatives are computed only over X1 . 
Additional computational time is required for the FFT to be applied over X0 + X1 , 
and the form of the data added in X0 is appropriate only for that particular problem 
studied, in which the dependent variable is essentially constant near the left-hand and 
right-hand boundaries for the problem time of interest. Although thus limited, 
Gazdag’s work demonstrated that pseudo-spectral FFT methods could be adapted 
to a non-periodic problem, and thereby motivated the present work. Preliminary 
results on the present work were presented in [8,9]. 

2. THE TECHNIQUE: REDUCTION TO PERIODICITY 

As a more general artifice that involves no penalty of additional FFT time, consider 
the following technique which we describe as “reduction to periodicity.” Consider 
an arbitrary distribution of the dependent variablef, at some time. They, distribution 
is decomposed, in one direction at a time, into the sum of a polynomial g and a residual 
function fi . The iVth degree polynomial is chosen so that the residual function fi , 
when extended as a periodic function, is continuous through the (N - 1) order 
derivatives at the boundaries. The FFT is applied only to the residual function fi 
to obtain its derivatives in the usual way (see e.g. [7]) while the derivatives of the 
polynomial function g are obtained analytically. 

The derivatives of the original (total) function fi(x) at both boundaries must be 
known, exactly or approximately, to the order (N - 1). Then the reducing polynomial 
g(x) is solved so as to match these derivatives in the residual function fZ(x) at the 
left and right boundaries (x = 0 and x = 1) as follows. Define 

where 
.m> = fiw - g(x) (1) 

g(x) = a,x + &X2 + -.* + .t#) 

= ,fo ‘kXk (2) 
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and the a,‘s are chosen such that 

f(“)(l) - f’“‘(0) = 0, 2 2 O<n<N-1 

where superscript (n) denotes the n-th derivative. The solution for N 
in the Appendix. The general solution is written as follows. 

a N = & DN-l 

where 
a0 = J;(O) 

D, = p’(l) - fl”‘(0) 

and the binomial coefficient 
k 0 n = (k -k:,! n! (44 

(3) 

7 is given 

(44 

(4b) 

(4c) 

(44 

Note that the definition of a,, is just an arbitrary prescription since the constant term 
could just as well have been absorbed into the periodic part. 

It is perhaps worth emphasizing that this polynomial is not a fit of the function,f, , 
but only of the differences of the function fi and its (N - 1) derivatives at the left 
and right boundaries, i.e., its departure from smooth periodicity. For example, if fi 
is already a periodic and infinitely differentiable function such as a sine wave, then 
g = 0 identically. 

The value of the derivatives for D, at the boundaries must either be given or must be 
evaluated by one-sided finite difference methods (FDM). Even when FDM are used 
to evaluate derivatives at the boundaries, we have introduced no discretization error 
at this point. The decomposition is exact, even for arbitrary values of a, , a2 , etc. 
since these only serve to define g(x). But if these values are good, then f2(x) will appear 
to the discrete FFT to be continuous with continuous (N - 1) order derivatives at the 
quasi-periodic boundaries. Even with g(x) = 0, the process is convergent (non- 
uniformly) but the discontinuities in fi(x) and its derivatives, when extended period- 
ically, give rise to a “ringing” or Gibbs phenomena in the FFT representation which 
greatly slows the convergence (e.g. see [3, lo]). The only purpose of the polynomial 
evaluation is to reduce the “ringing” in the FFT representation off,(x). 

3. INITIAL ACCURACY TESTS ON STATIC FUNCTIONS 

In the first phase of these accuracy tests, we tested this technique on several static 
test functions fi , the most difficult of which was the damped sine wave 

fi(x) = eax sin(27rbx) (5) 
with a = -2 and b = 3/4. This function is aperiodic and contains all Fourier 
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components. We evaluated first and second derivatives and compared them to second, 
fourth, and sixth order FDM applied to both fi (after the reduction to periodicity) 
and to fi , using consistently ordered non-centered FDM expressions at and near 
boundaries. Three methods were used to evaluate D, in the evaluation of g: (1) exact 
values, (2) FDM values obtained by a “limited second-order” subprogram, and (3) 
exact values for D, and D, , and “limited second-order” values for D, when n > 1. 
The “limited second-order” subprogram was developed to allow second-order 
accuracy when the mesh spacing is fine enough to assure meaningful evaluation, while 
assuring a monotonic variation for coarse mesh spacing (like Ax = l/8) as is the case 
with first-order methods. (Since only the difference between derivatives at the left 
and right boundaries is required, the FDM were rearranged to calculate this difference 
directly, rather than calculating derivatives at both boundaries and subtracting them. 
This improved round-off error on the approximately g-digit PDP-10 computer.) 

Significantly, the accuracy of this technique of reduction of periodicity was not 
limited to the accuracy of the second-order FDM used to evaluate the D, , over the 
range of spatial increments tested up to dx = l/128. The purpose of this evaluation 
of D, and its use in defining g is not to achieve high “order” but to eliminate the 
“ringing” in the FFT. The third method for D, , in which D, is given exactly, is 
representative of the fluid dynamics problem in the conservation variable fi = ~5, 
u = velocity and 5 = vorticity or some other advected property, where fi' = 0 
at a no-slip wall or a symmetry line. 

In these first-phase tests, we varied Ax = l/2?’ from l/S to l/128 (or p = 3 to 7) 
and N, the degree of the reducing polynomial, from 1 to 5. In addition, we tested 
another method of periodically extending fi by using a mirror image extension as 
commonly used in the Fourier analysis of non-periodic experimental data. This 
consists of defining additional data from x = 1 to 2 by the equation fi(x) = 
--f,(2 - x), and then applying the FFT from x = 0 to 2. However, this method 
was found to be inferior in all respects to the reducing-polynomial technique for 
N > 1, and not sufficiently accurate for our purposes. 

Comparisons were based on three indexes of error: the maximum error over all node 
points i, the mid-range error, and the three-point average mid-range error. The larger 
error for the new technique occured near the boundaries, as might be expected. The 
last two indexes were always comparable in magnitude, and are more pertinent to our 
interest in high Reynolds number fluid dynamics problems. 

The total tests for this initial phase of the work thus involved 

4 methods of reduction to periodicity (3 methods for D, , plus the 
mirror-image extension), 

5 values for the degree N of the reducing polynomial g, 
3 orders of FDM (second, fourth, sixth) applied to 
2 functions (quasi-periodic fi and aperiodic fi), 
5 values of Ax, from l/8 to l/128, 
2 derivatives, fi’ and fi, and 
3 error indexes (maximum, mid-range, average mid-range). 
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Disregarding the tests for the mirror-image extension, all combinations of the above 
parameters were run. Fortunately, the resulting stacks of computer output can be 
summarized conveniently and accurately by a few observations about the importance 
of N, and then by comparisons with the high-order FDM. 

The degree N of the reducing polynomial g is of critical importance. Subtraction 
of merely the linear trend (N = 1) was completely inadequate, At least N = 3 was 
required for reasonable accuracy of the first derivativef,‘, and N = 4 for the second 
derivative f; . Increasing N from any odd degree N to N -L 1 did not improve the 
accuracy of fi’ but did improve f; . Likewise, increasing from any even degree N 
to N + 1 did not improve f; but did improve fi’. This observation applies to the 
absolute accuracy, not just to the accuracy relative to FDM (see Section 6 below). 

When the required higher derivatives at the boundaries are known exactly, the 
results for N = 5 are indeed excellent, being always better than sixth-order FDM. 
However, this does not correspond to the situation in real fluid dynamics problems 
wherein the higher derivatives at the boundaries are not known. When evaluating 
these boundary derivatives by at best second-order FDM, it might appear that the 
entire representation would be limited to second-order accuracy. However, we found 
that even for fairly small dx (up to dx = l/64 and even l/128 in some cases) the 
accuracy of this technique with relatively crude FDM evaluation of the boundary 
derivatives was more accurate than fourth-order FDM. 

The various accuracy rankings discussed above are summarized in Tables i-111. 
The principal conclusions of this initial phase of the accuracy tests are as follows. 

Using exact values for all D, , the technique of reduction to periodicity with a fifth- 

TABLE I 

Comparison of the Reduction-to-Periodicity Technique to Conventional Finite-Difference Methods” 

(a) Accuracy ranking for fi’ 
N=2 O(2) < RTP < O(4) 

3 O(4) < RTP < O(6) 
4 O(4) < RTP < O(6) 
5 O(6) < RTP 

(b) Accuracy ranking for &’ 
N=2 O(2) < RTP < O(4) 

3 O(2) < RTP < O(4) 
4 O(4) < RTP < O(6) 
5 O(4) < RTP < O(6) 

a The notation O(2) < RTP < O(4) means that the reduction-to-periodicity technique had an 
accuracy between second-order and fourth-order FDM; the notation O(6) < RTP means that the 
reduction-to-periodicity technique had an accuracy greater than sixth-order FDM. This table is 
based on the mid-range average error (over three points) for the test function fi given by Eq. (5). 
N = degree of the reducing polynomial g in Eq. (4). The mesh spacing was varied from dx = l/8 
to l/128. Exact values of the boundary derivatives D1 , D, , etc., were used to evaluate g. 
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TABLE 11 

Comparison of the Reduction-to-Periodicity Technique to Conventional Finite-Difference Methods” 

(a) Accuracy ranking for f,’ 
N=2 O(2) < RTP < O(4) 

3 O(4) < RTP < O(6) 
4 O(4) < RTP < O(6) 
5 O(4) < RTP < O(6) 

(b) Accuracy ranking for f; 
N=2 O(2) < RTP < O(4) 

3 O(2) < RTP < O(4) 
4 O(2) < RTP < O(4) 
5 O(2) < RTP < O(4) 

a Same as Table I, except that the boundary derivatives D, , D, , etc., were evaluated by one-sided 
second-order FDM. 

TABLE III 

Comparison of Reduction-to-Periodicity Technique to Conventional Finite-Difference Methods” 

(a) Accuracy ranking for f>‘, exact values used for D, 

N=3 O(4) < RTP < O(6) 
4 O(4) < RTP < O(6) 
5 O(6) < RTP 

(b) Accuracy Ranking for fi, with D, evaluated by O(dx2) FDM 

N=3 O(2) < RTP < O(4) 
4 O(2) < RTP < O(4) 
5 O(2) < RTP < O(4) 

a Same as Tables I and II, except that the comparison is based on the maximum error over all i, 
which occurs at or near the boundaries. 

degree reducing polynomial can give mid-range and boundary errors for fr’ better 
than sixth-order FDM for Ax = l/8 to l/64, and very comparable to sixth-order FDM 
for dx = l/128. Using the exact value for D, and a “limited second order” FDM 
evaluation of higher D, , the technique can give mid-range and boundary errors 
between those of fourth and sixth-order FDM. This is the range of interest for high 
Reynolds number flow calculations (see following section). Results for f; are not as 
good as the above results, especially near the boundaries, and are roughly two orders 
lower in accuracy; but this is also compatible with considerations at high Re. 
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4. SIGNIFICANCE TO HIGH REYNOLDS NUMBER FLOWS 

The technique yields higher-order accuracy for fi' than for f; , which is the type of 
accuracy ranking desirable for high Reynolds number flows. Consider the one- 
dimensional model equation (in dimensionless variables), 

The first problem that arises for the Reynolds number Re 3 1 is that second-order 
FDM do not yield a “balanced” method. When second-order FDM are used for both 
first and second order spatial derivatives in Eq. (6), then the truncation error from the 
first-derivative advection term is O(u Re dx2), while the truncation error from the 
second-derivative diffusion term is 0(Ax2). For Re sufficiently large, for u = O(l), 
and for achievable Ax, the truncation error of O(u Re dx2) will be greater than the 
entire diffusion term, so that the actual contribution of the viscous diffusion term is 
lost in the truncation error of the advection term. Without prior knowledge of the 
spatial distribution of 5 (particularly, the relative sizes of a2Qax2 and al/ax, which are 
independent for transient and/or multidimensional problems) it is not possible to 
assess the real import of this lack of a “balanced method” on the accuracy of a 
particular fluid dynamics solution. However, one plausible criterion to use is that the 
method be balanced in truncation error, with the size (not order) of the truncation 
error from the advection term being approximately equal to that from the diffusion 
term when U, iQ8x and E2</ax2 are all assumed to be of O(1). 

To achieve this, one can use higher order methods for the advection term. Then 
for Ax e I/100, it may readily be verified that the use of an O(dxP) method for the 
diffusion term and an O(dx”- *) method for the advection term indicates balance up to 
Re e IO” (see, e.g. [8, 91). Practically, the Re may go even higher and still allow 
balance, since the velocity coefficients like u in Eq. (6) will be less than 1 near the 
separation and reattachment points where the full Navier-Stokes equations are 
important. 

However, the present technique does nothing for the other difficulties associated 
with high Re fluid dynamics, the oscillatory discretized solutions (“wiggles” [ll, 
pp. 163-1651) and the Nyquist frequency limitation. The oscillations can be removed 
by using low-ordered methods for the advection term, which aggravates the “balance” 
problem and deteriorates accuracy, or by nonlinear filtering devices such as those in 
[12-141. The Nyquist frequency limitation (e.g., see [9]) means that frequency com- 
ponents higher than the 2dx wavelength cannot be resolved with the discrete infor- 
mation available and that these components may be necessary for a qualitatively 
correct representation. (For some problems, e.g. boundary-layer flows or flows which 
are nearly parabolic in one direction, the high frequency components may not be 
necessary. For further discussion, see [S, 9, 111.) This appears to be the fundamental 
difficulty of high Re laminar calculations, and is perhaps insurmountable for any 
general-purpose algorithm. 
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For the high Re (hyperbolic) limit, discontinuous solutions are possible. If the 
boundary conditions are periodic, these problems can still be treated by pseudo- 
spectral methods, but with some degradation of accuracy [lo]. However, the case of 
of a step discontinuity (e.g., a shock wave) entering or leaving a boundary will not be 
well represented by the present technique since the higher derivatives used to evaluate 
the polynomial function g do not exist. Also, like most methods, the present technique 
does not assure positivity when applied to inherently positive quantities like density. 

5. FURTHER ACCURACY TESTS ON STATIC FUNCTIONS 

In the next phase of the work on static functions, the technique was improved by 
increasing the degree of the reducing polynomial from N = 5 to 7, and by increasing 
the order of accuracy of the FDM used to evaluate derivatives at the boundaries. 
Two versions of the subroutine used to evaluate these boundary derivatives have 
evolved. The first, called P7, uses 7-point one-sided FDM (e.g. see [20]) to evaluate 
the 6 derivatives needed for the seventh-degree reducing polynomial. This calculates 
the first derivative D, to sixth order, D, to fifth order,..., D6 to first order. This 
distribution of accuracy is suggested by our previous experiments and by the theory of 
Lyness (see following Section 6). However, for functions which are not very smooth 
and/or for short word length computers (such as the 9-digit PDP-10 used in this 
second phase) it does no good, and in fact may deteriorate accuracy, to use sixth-order 
7-point FDM for D, . The second subroutine, called P75, uses 5-point FDM for D1 
(giving fourth-order accuracy) and for D2, and 7-point FDM for the higher derivatives. 

As expected, the use of these higher-order FDM for boundary derivatives increases 
the accuracy of the overall technique, but the results on static test functions indicate 
that the improvement is not as significant as hoped for, so that it does not appear 
possible to approach the accuracy obtained when the exact derivatives are known. 
The more important improvement is in the use of the seventh-degree polynomial. 
The accuracy was improved significantly, but not enough to change the ranking 
compared to fourth and sixth order FDM. For practical reasons, N = 7 appears 
to be the largest value useable (see Appendix). 

6. THEORETICAL JUSTIFICATION 

Lyness [15] has published a work on what he calls the “Lanczos representation” 
of a function, which is the same idea for a static function as used here except that the 
function g is represented as a Bernoulli polynomial. Lyness shows theoretically and 
for general functions what we had found only experimentally for the particular 
functions tested-that the degree of the polynomial is very important to the accuracy, 
that the order of the FDM used at the boundaries is less important, that the use of a 
fifth-degree polynomial with second-order FDM at boundaries would give fi’ to 
overall fourth-order accuracy, that the accuracy of the first derivative evaluation 
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would improve as N was increased from N = 1 by increments of 2, etc. Lyness’ 
work also suggested that a decreasing order of FDM for the D, as N increased would 
be appropriate, and that some improvement is to be expected by going to the next 
higher derivative (i.e., increasing N) so long as the error in the required higher 
derivative is less than O(1). At our request, Lyness also extended his previous work to 
prove [16] another aspect which we had found experimentally, that second spatial 
derivatives are two orders less accurate than first spatial derivatives. Because of 
Lyness’ work, the present technique has a firm theoretical basis for static test functions. 

7. OTHER SIMILAR TECHNIQUES 

We have already mentioned (in the Introduction) Gazdag’s technique of adding an 
artificial data regime, and its limitations. Also, we mentioned our tests on the “mirror 
image” data-doubling technique commonly used in the Fourier analysis of non- 
periodic experimental data; we found this technique to be entirely inadequate. 
Two other similar approaches should be noted. 

Skiillermo [17] subtracted departures from periodicity to develop a high-order 
FFT method for the Poisson equation. In this technique, the derivatives must be 
known a priori, rather than being evaluated by FDM. Also, knowledge of cross- 
derivative terms like azfi/ax ay at boundaries are required, and accuracy is limited by 
corner singularities. 

In an earlier paper, Orszag (see [3, p. 3161) considered the improvement from 
subtracting off the linear trend of data (i.e., N = 1 in our terms) from the one- 
dimensional constant-coefficient advection-diffusion equation. He also mentioned 
the possibility of subtracting terms to assure continuity off; , provided these deriv- 
atives are known at the boundaries. 

8. ACCURACY AND STABILITY TESTS ON DYNAMIC ONE-DIMENSIONAL PROBLEMS 

In the initial phase of the one-dimensional tests of a dynamic (time-dependent) 
problem, we compared the accuracy of the present technique of reduction-to- 
periodicity with Gazdag’s results [7] on Burgers equation, normalized (with 7 = f/Re) 
as 

au au 324 -=- 
a7 ReQ-+s (7) 

and applied to the step initial condition problem of ~(0, T) = u1 with U(X, 0) = 0 
for x > 0. This problem has an analytic solution [7] for the quasi-steady-state 
propagation in terms of the hyperbolic tangent: 

u = $ (1 - tanh(u,w Re/4)) (8) 
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where 
w = x- u,ReT/2. (9) 

(Although this solution satisfies (7) exactly, it does not apply to the early transients 
since it gives ~(0, 0) = 2442 rather than u1 . For 7 > 0, it gives the correct left-hand 
boundary condition of ~(0, T) = u1 only in the limit of T * Re = t large, i.e., it 
applies only to the quasi-steady-state propagation.) We used both a fixed reference 
frame for easy comparison with Gazdag’s results [7] and a moving reference frame, 
moving at the speed 242 of the far-time solution, for comparison with the fourth- 
order results of Hirsh [18]. For this case, the Burgers equation is transformed to 

au 
- = -(u - 242) -g + &g . at 

Time differencing was accomplished by the 3-time-level, O(dt2) Adams-Bashforth 
method as suggested by Orszag (see [l, p. 2531) and was started with a 2-time-level, 
O(dt2) iterative approximation to a Crank-Nicolson method (e.g., see [ll]). In [7], 
a third-order Lax-Wendroff expansion was used for the time differencing. Started 
from a step initial condition, the “steady-state” pulse propagates at 42. Two types of 
discretization error are manifested in the “steady-state” propagation; errors in the 
shape of the profile, and errors in the position of the profile. The latter error was 
removed in [7] by a shift in the time scale, so as to center the coordinate on the pulse. 
This eliminates the errors due to early transients, which are difficult to interpret for 
step initial conditions and the quasi-steady analytic solution. We followed the same 
procedure here. With our time differencing scheme, it happened that the magnitude 
of the time shift required was comparable to that of [7] but of opposite sign. 

The spatial and temporal accuracies achieved using the present technique on this 
problem were equivalent to Gazdag’s results, to the four significant figures published. 
(See [7, Table 21.) The present technique appears to be more generally applicable and 
requires an FFT operation on less data, compared to Gazdag’s technique. (The time 
differencing method used in [7] was a third-order Lax-Wendroff expansion, which 
requires the evaluation of sixth-order spatial derivatives for viscous equations. 
That method is much more expensive than the present time differencing, but that 
method has already been superceded by Gazdag’s later contribution in [19] of his 
“partially-corrected Adams-Bashforth” method.) 

For comparisons with FDM solutions, we followed Hirsh [ 181 and set values beyond 
the computational mesh from the exact solution, thus avoiding the necessity of special 
one-sided FDM at and near the boundaries. This simplification is applicable only to 
the test problem, not to the multidimensional fluid dynamics problems of interest, 
but was felt to be justified since our interest in the high-order FDM is only secondary, 
for comparison purposes. 

We again used O(dt2) Adams-Bashforth time differencing, and compared our FFT 
results to FDM of order dx2, dx4 (including the standard dx4 method and the compact 
dx4 method as used by Hirsh) and dx6. We also considered all combinations of 
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mixed methods, e.g., our FFT technique on first spatial derivatives with 0(0x3) 
FDM on the second spatial derivatives, etc. 

The results were excellent, in that (1) the present FFT technique with reduction 
to periodicity is stable for the time dependent problem, and (2) the accuracy is 
comparable to sixth-order FDM methods and to Gazdag’s method, even though we 
used only relatively crude second-order evaluation of D, near boundaries. 

However, neither the present FFT technique nor any of the high order FDM tested 
solves another problem of high Re flows, that of the spatial oscillations which develop 
for cell Reynolds numbers Rc > 2, where Rc is defined as Rc = u Re Ax. (In the 
moving reference frame, this limit is changed to Rc > 4 just because of the Galilean 
transformation of the advection velocity in Eq. (IO), but this has no significance to real 
fluid dynamics problems.) Such oscillations are also visible in Gazdag’s solutions 
in [7]. 

It is especially clear in the moving reference frame, Eq. (lo), that the problem of 
the oscillations at Rc > 2 is tied in with the Nyquist frequency limitation as previously 
discussed in Section 4, and can only be removed by filtering of some kind [12-141, 
thus effectively building-in a fine structure to the solution. 

9. OPERATION COUNT PENALTY 

The reduction-to-periodicity technique adds to the operation count of the usual 
pseudospectral FFT method. For M = l/Ax > 1, the penalties due to the boundary 
evaluations of D, and the evaluations of the coefficients a, are negligible, and the 
major contribution comes from the evaluation of the reducing polynomial g and its 
derivatives at each node point. For purposes of comparison, we use the usual asymp- 
totic estimate for the operation count of the FFT over Mpoints, which is [27] 2M In M 
“complex operations,” defined as a complex multiplication and a complex addition. 
Using data on the execution times and complex arithmetic operations from a 
CDC 6600 manual, we find that one “complex operation” is roughly equivalent to 49 
“real operations,” defined as a real multiplication and a real addition. For an FFT on 
real data (corresponding here to the forward FFT on u) the operation count can be 
somewhat reduced [28] by packing real data in complex numbers and operating on 
M/2 points instead of M points, followed by some additional work proportional to M. 
We estimate a representative reduction by a ratio of 213 using this packing for the 
forward FFT on real data. (Using this gives a more conservative engineering estimate 
of the penalty; i.e., the penalty for our reduction-to-periodicity technique would be 
slightly better using the simpler FFT operation count.) 

For a non-conservation form of an advection-diffusion equation like (7), the 
evaluation of the spatial derivatives requires the following calculations. The 
estimate of the real operation count is approximate, and valid for large M. The 
notation zi denotes the discrete Fourier transform of u, and K is the wave number; 
the calculations required to evaluate the derivatives are described in [7]. 
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Calculation 

forward FFT on (real) u to get ti 
divide (complex) ZI by K (real) 
backward FFT on (complex) ii/K to get &/ax 
divide (complex) zi by (real) K2 (prestored) 
backward FFT on (complex) ii/K2 to get a2z@x2 
multiply au/ax by Re and U, add terms 
total 

Real operation count 

(4$)(2/3) 2M In M 
2M 
(44) 2M In M 
2M 
(44) 2M In M 
2M 
24MlnMt 6M 

The additional operations required by the reduction-to-periodicity technique 
involve the evaluation of the N-th degree polynomial g at M node points and the 
analytic evaluation of the derivatives of g. Note that the evaluation of powers of x 
in (2) is very expensive but can be pre-stored in one-dimensional arrays. 

Calculation Operation count 

evaluate g at each node point NM 
evaluate agjax at each node point (N - l)M 
evaluate a2g/ax2 at each node point (N - 2)M 
total 3(N - l)M 

Combining these operation counts for the usual pseudospectral FFT methods 
and the reduction-to-periodicity technique, we obtain an estimate for the penalty 
in computer time. For the (worse) case of N = 7, we obtain 

3 penalty ratio E 4 ,n M + 1 (11) 

This gives a 10 % penalty at M = 1024, 15 % at M = 128, and 17 “/, at M = 64. 
For a conservation-form equation, the penalty for M > 64 is increased at most 2 %. 
(For N = 5, the penalty is reduced by a factor of 2/3.) The value of 15 % is thus 
representative of the penalty for N = 7 and the useable range of mesh refinement. 
This representative penalty of 15 % would also apply to the two-dimensional 
Navier-Stokes equations. 

10. STABILITY AND ITERATIVE CONVERGENCE 

We have been unable to prove anything theoretically about the stability of this 
technique of reduction-to-periodicity. (According to [6], the stability question for 
spectral methods even without this complication is difficult, and requires a new 
definition of stability.) However, we have experimentally demonstrated stability and 
iterative convergence to a steady-state solution for a variety of problems in one and 
two dimensions. The purpose of these tests is not to present detailed computational 
results, but only to report that stability and iterative convergence are indeed obtained 
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with this rather complex method for a variety of partial differential equations, 
boundary conditions, initial conditions, and time-differencing methods. 

In one space dimension, the partial differential equations considered were the 
wave (inviscid) equation, the heat equation with a source term (which converges to 
a one-dimensional Poisson equation in the steady state), the linearized Butgers 
equation or advection-diffusion equation, the non-conservation form of the nonlinear 
Burgers equation (7), and the conservation form of the nonlinear Burgers equation. 
Boundary conditions considered included the following: fixed left boundary (inflow) 
and fixed right boundary (stagnation), gradient and extrapolated right boundary 
(outflow), and sinusoidally varying left boundary (inflow). The initial conditions 
treated were both impulsive step functions (i.e., one-point pulse change in the right 
boundary condition) and conditions close to the steady-state solutions. The degree 
of the reducing polynomial was varied from 1 to 7, and the coefficients were evaluated 
using up to 7-point FDM [20] at the boundaries. The time differencing schemes used 
were O(dt) forward-time, O(dt2) Adams-Bashforth, 0(nt2) “partially-corrected 
Adams-Bashforth” method due to Gazdag [19], and an O(dt4) Runge-Kutta scheme. 

The impulsive step-function initial condition caused severe errors in the initial 
transients. Some contribution to this error is apparently characteristic of pseudo- 
spectral methods and is due to the non-local nature of the spatial approximations, 
but the situation is aggravated in the present technique by the one-sided FDM 
evaluation of the boundary derivatives D, . 

The Adams-Bashforth method is known to be weakly unstable, which did cause 
weak oscillations near boundaries in the steady state. These were not very trouble- 
some, but were removed by the use of Gazdag’s “partially-corrected Adams- 
Bashforth” method [19] which is stable and appears in all ways to be preferable to 
the Adams-Bashforth method. Otherwise, all these time-differencing schemes were 
stable and iteratively converged to the steady-state solution, with only the usual 
d t-restrictions for pseudo-spectral methods. These restrictions are Courant number 
u dt/dx < l/n (e.g., [5, p. 471) and diffusion number dt/Re dx2 < K/T [21] where 
K ‘v 1 or 2 for the range of parameters tested here. 

The O(dt4) Runge-Kutta time integration scheme was especially successful. A 
fourth-order Runge-Kutta time integration has been previously used by Oberkampf 
and Goh [22] within a semi-discrete “method-of-lines” formulation, and by Bratanow 
and Ecer [23] within a triangular finite element formulation. (Watanabe and Flood [24] 
have used an O(dt4) fully implicit method in one-dimensional calculations which 
has the advantage of unconditional stability, but which requires nonlinear algebraic 
solutions by iteration within each time step.) Although the present scheme requires 
four FFT evaluations for derivatives at each time step compared to one FFT 
evaluation for the “partially-corrected Adams-Bashforth” method, its critical dt is 
more than four times as large. (According to Orszag [21], the stability gain for the 
wave equation is a factor of 2(2)lj2 = 2.83, but our present experience shows this is 
even greater for the viscous equation.) Oberkampf and Goh [22] also found enhanced 
stability for their fourth-order Runge-Kutta scheme in the method of lines, as did 
Bratanow and Ecer [23] in their finite element method. The particular Runge-Kutta 



PSEUDO-SPECTRAL FFT TECHNIQUE 217 

scheme which we used (see, e.g., [25]) allows the intermediate calculations to be 
over-written, so that storage for this scheme requires only one additional storage 
compared to the O(dt2) methods. It has proved to be stable with periodic-inflow and 
continuative-outflow boundary conditions, as well as fixed inflow and outflow 
conditions. We are now using this scheme of time integration and the reduction-to- 
periodicity technique for FFT calculations of two-dimensional transient aerodynamics 
problems. 

11. DEMONSTRATION OF STABILITY AND ITERATIVE CONVERGENCE 
ON A Two DIMENSIONAL PROBLEM 

As a representative problem for two-dimensional separated flows, we solved the 
familiar driven cavity problem (e.g., see [15]). The solutions were restricted to a very 
coarse mesh (8 x 8 cells) and a corresopndingly low Reynolds number, Re = 5. 
The z,-c (stream function and vorticity) system of dependent variables was used with 
simple O(ot) forward time differencing. The no-slip wall boundary condition on [ 
was evaluated using 5-point (fourth order) and 7-point (sixth order) one-sided FDM 
WI for %angential /an at the walls. The Poisson equation for tj was solved in a nested 
time-like iteration at each time step with a crude convergence criterion during the 
early transients, since only the steady-state iterative convergence was of interest. 
It proved to be necessary to under-relax boundary vorticity by a factor of 4 in order 
to avoid a bounded mild oscillation in the steady-state results. Steady-state iterative 
convergence was then attained unequivocally, to the g-digit accuracy of the computer 
used. 

The technique of reduction-to-periodicity is also applicable to arbitrarily stretched 
coordinates, so long as the transformation applies to x and y independently, and to 
three space dimensions. The method used for the Poisson equation is not adequate 
for realistic problems; rather, a high order direct Poisson solver, of O(dx4) [26] or 
O(dx6) is needed to make the method practical. Also, we have yet to demonstrate 
that the technique works on the cross-derivative terms like 3jJax Q which are 
generated by non-orthogonal coordinate transformations. 

12. SUMMARY 

A technique called “reduction to periodicity” has been developed for the use of 
pseudo-spectral FFT methods in non-periodic time-dependent problems in fluid 
dynamics. The technique involves the evaluation of a polynomial function which 
approximates the departure from smooth periodicity of the dependent variable 
distribution at each time level, with the FFT being applied only to the residual 
quasi-periodic distribution. The accuracy has been demonstrated in several one- 
dimensional problems, both on static functions and on dynamic time-dependent 
problems, linear and nonlinear. The work of Lyness [15] has provided a firm 
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theoretical basis for the accuracy of the one-dimensional representation of static 
functions. For advection-diffusion equations in typical mesh spacings, the operation 
count penalty of the technique is roughly 15 % compared to the usual pseudospectral 
FFT method. Stability and iterative convergence have been demonstrated in several 
one-dimensional problems with first, second, and fourth order time differencing 
schemes, and in a two-dimensional problem with first-order time differencing. 

For practical problems, it is required that high-order derivatives at the boundaries 
be evaluated by one-sided finite difference methods; however, the accuracy of the 
overall technique is not limited to the accuracy of these finite difference methods. 
The technique addresses one of the difficulties associated with high Reynolds number 
flow calculations, that of obtaining a “balanced” method, and provides an alternative 
to higher-order finite difference or finite element methods. While quite accurate 
compared to conventional difference schemes, the technique does not retain the 
“infinite-order accuracy” of pseudospectral methods based on proper expansions. 

APPENDIX: EXPANSIONOF EQS.(~) FOR ASEVENTH-DEGREEPOLYNOMIAL 

Equations (4) for the coefficients of the reducing polynomial are valid for any 
degree N. However, in practical physical problems, the (N - 1) order derivatives at 
boundaries are not known but must be evaluated by one-sided FDM [20]. As is 
well known, the evaluation of derivatives of high order by one-sided formulas is 
adversely affected by minute noise or even by computer rounding errors, due to the 
large coefficients in the FDM formula. We find that this technique is limited in practice 
to polynomials of degree N = 7. In this case, Eqs. (4) expand as follows. 

Given non-periodic data fi(x), define 

m> = l-l(x) - g(x), 
g(x) = a,x + a,x2 + a,x3 + *.. +f,(o). 

With primes indicating differentiation, let 

(AlI 
Wf) 

Do =: h(l) - fi(O) 
D, = .L’(l> -f-l’(O) 
D, = f;(l) - f;(O), etc. 

Then, for g a seventh-degree polynomial, we find 

L D,, a7 = 5040 
1 7 

a6 = %. D, - 2 a7 , 

1 
a, = - D, - 3a, - 120 la,, 

(A31 
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1 5 35 
a4 = - - - - - - 

24 
D, 

2 
as 5a, 

4 
a, , 

I 10 
a3 = - D, - 2a4 - - as - 5a, - la, , 

6 3 

1 3 5 7 
a2 = - D, - - a3 - 2a, - - - - - 

2 2 2 
as 3a, 

2 
a, 1 

a, = D, - a2 - a3 - a, - as - a, - a, . (A41 

Polynomials of degree less than 7 are evaluated from these equations by setting higher 
coefficients equal to zero, e.g., the 5-th degree polynomial is found by setting 
a7 = a, = 0. 
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